A Kusuoka-Lyons-Victoir particle filter

نویسندگان

  • Dan Crisan
  • Salvador Ortiz-Latorre
چکیده

The aim of this paper is to introduce a new numerical algorithm for solving the continuous time non-linear filtering problem. In particular, we present a particle filter that combines the Kusuoka-Lyons-Victoir cubature method on Wiener space (KLV) [13], [18] to approximate the law of the signal with a minimal variance ”thining” method, called the tree based branching algorithm (TBBA) to keep the size of the cubature tree constant in time. The novelty of our approach resides in the adaptation of the TBBA algorithm to simultaneously control the computational effort and incorporate the observation data into the system. We provide the rate of convergence of the approximating particle filter in terms of the computational effort (number of particles) and the discretization grid mesh. Finally, we test the performance of the new algorithm on a benchmark problem (the Beneš filter).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titles and Abstracts Stability of the Nonlinear Filter for Random Expanding Maps

In the first part of the talk, I introduce sharp gradient bounds for the perturbed diffusion semigroup. In contrast with existing results, the perturbation studied here is random and the bounds obtained are pathwise. The approach builds on the classical work of Kusuoka and Stroock. It extends their program developed for the heat semi-group to solutions of stochastic partial differential equatio...

متن کامل

The adaptive patched cubature filter and its implementation

There are numerous contexts where one wishes to describe the state of a randomly evolving system. Effective solutions combine models that quantify the underlying uncertainty with available observational data to form scientifically reasonable estimates for the uncertainty in the system state. Stochastic differential equations are often used to mathematically model the underlying system. The Kusu...

متن کامل

On (p, q)-rough paths

We extend the work of T. Lyons [Lyo98] and T. Lyons and Z. Qian [LQ02] to define integrals and solutions of differential equations along product of p and q rough paths, with 1/p+1/q > 1. We use this to write an Itô formula at the level of rough paths, and to see that any rough path can always be interpreted as a product of a p-geometric rough path and a p/2-geometric rough path.

متن کامل

A Variation Embedding Theorem and Applications

Fractional Sobolev spaces, also known as Besov or Slobodetzki spaces, arise in many areas of analysis, stochastic analysis in particular. We prove an embedding into certain q-variation spaces and discuss a few applications. First we show q-variation regularity of Cameron-Martin paths associated to fractional Brownian motion and other Volterra processes. This is useful, for instance, to establis...

متن کامل

Cubature on Wiener Space: Pathwise Convergence

A. Cubature on Wiener space [Lyons, T.; Victoir, N.; Proc. R. Soc. Lond. A 8 January 2004 vol. 460 no. 2041 169-198] provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013